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1 Background
Suppose we’re given data in a high-dimensional space and wish to convert it into lower
dimensional. To preserve the most "signal", we want to ensure we capture the most variance.

For our example, suppose we have two features (Feature 1 and Feature 2), that are both in R2.
We wish to map our data into R1, or a line. Which line should we choose? Per above, we want
to choose the one with the most variance. So we’ll choose the longest line.

Our goal is to map (aka, project, aka Inner Product) our data onto this chosen line, reducing
it’s dimension and keeping it’s information. We note that this "line" is really just a linear
combination of our features.

But how do we �nd this optimal combination of our features (w)? (Assuming we don’t know
that PCA is our solution)

2 Mathematical Formulation
So how do we �nd the optimal w? Since we’re trying to maximize the variance, we’ll need the
mean(�) and variance(C) of our data.
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Our goal is to �nd the w that maximizes the variance (C). First, we need to re-write our � and
C in terms of w .
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So our goal is to maximize the above, but if we look, we realize that if we just keep increasing
w , we’ll also just keep increasing our objective function. We need to introduce a limit on w -
that the norm is restricted to 1
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We can now manipulate this equation to come up with a simpler solution
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Now that our equation is simpler (we’ve separated our objective (w) from the rest), we can
focus on optimizing it. We’ll need to use Lagrangian Multipliers.
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3 Solution
For simplicity, let’s assume we’re given an original dataset consisting of 2 feature (R2), and
that their covariance matrix (C) is given by

C = [
1 0
0 2] [3.1]

Our optimization problem becomes

max
w∶||w||≤1

wT (C) w

max
w∶||w||≤1 [w1, w2] [

1 0
0 2] [

w1
w2]

max
w∶||w||≤1

w2
1 + 2w2

2

[3.2]

We can visualize our problem (with the red circle being our constraint on w).

Since we now have our constrained opimization problem, we can use the Lagrangian function
to optimize.

max
w∶||w||≤1

wT (C) w

L(w, �) = wTCw + �(1 − ||w||2)
[3.3]

We’ll want to di�erentiate with respect to w and set it equal to zero to solve for the solution.

)L
)w = 2Cw − 2�w

2Cw = 2�w
Cw = �w

[3.4]

The above is the exact de�nition of an Eigendecomposition. Hence, the Principal Components
are the solution to our problem. If we want to convert to a 1-D space, we only select the �rst
Eigenvector. If we want to reduce to a 3-D space, we need to select the �rst 3 Eigenvectors.

We then need to project our data onto our Eigenvectors for the �nal solution - the dimensional
reduced data matrix Z
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A visual representation of our solution is below.

4


	Background
	Mathematical Formulation
	Solution

